\(\int (a+b \text {csch}^2(c+d x))^{3/2} \, dx\) [10]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [F]
   Fricas [B] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F(-2)]
   Mupad [F(-1)]

Optimal result

Integrand size = 16, antiderivative size = 126 \[ \int \left (a+b \text {csch}^2(c+d x)\right )^{3/2} \, dx=\frac {a^{3/2} \text {arctanh}\left (\frac {\sqrt {a} \coth (c+d x)}{\sqrt {a-b+b \coth ^2(c+d x)}}\right )}{d}-\frac {(3 a-b) \sqrt {b} \text {arctanh}\left (\frac {\sqrt {b} \coth (c+d x)}{\sqrt {a-b+b \coth ^2(c+d x)}}\right )}{2 d}-\frac {b \coth (c+d x) \sqrt {a-b+b \coth ^2(c+d x)}}{2 d} \]

[Out]

a^(3/2)*arctanh(coth(d*x+c)*a^(1/2)/(a-b+b*coth(d*x+c)^2)^(1/2))/d-1/2*(3*a-b)*arctanh(coth(d*x+c)*b^(1/2)/(a-
b+b*coth(d*x+c)^2)^(1/2))*b^(1/2)/d-1/2*b*coth(d*x+c)*(a-b+b*coth(d*x+c)^2)^(1/2)/d

Rubi [A] (verified)

Time = 0.08 (sec) , antiderivative size = 126, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.375, Rules used = {4213, 427, 537, 223, 212, 385} \[ \int \left (a+b \text {csch}^2(c+d x)\right )^{3/2} \, dx=\frac {a^{3/2} \text {arctanh}\left (\frac {\sqrt {a} \coth (c+d x)}{\sqrt {a+b \coth ^2(c+d x)-b}}\right )}{d}-\frac {\sqrt {b} (3 a-b) \text {arctanh}\left (\frac {\sqrt {b} \coth (c+d x)}{\sqrt {a+b \coth ^2(c+d x)-b}}\right )}{2 d}-\frac {b \coth (c+d x) \sqrt {a+b \coth ^2(c+d x)-b}}{2 d} \]

[In]

Int[(a + b*Csch[c + d*x]^2)^(3/2),x]

[Out]

(a^(3/2)*ArcTanh[(Sqrt[a]*Coth[c + d*x])/Sqrt[a - b + b*Coth[c + d*x]^2]])/d - ((3*a - b)*Sqrt[b]*ArcTanh[(Sqr
t[b]*Coth[c + d*x])/Sqrt[a - b + b*Coth[c + d*x]^2]])/(2*d) - (b*Coth[c + d*x]*Sqrt[a - b + b*Coth[c + d*x]^2]
)/(2*d)

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 223

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 385

Int[((a_) + (b_.)*(x_)^(n_))^(p_)/((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Subst[Int[1/(c - (b*c - a*d)*x^n), x]
, x, x/(a + b*x^n)^(1/n)] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && EqQ[n*p + 1, 0] && IntegerQ[n]

Rule 427

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[d*x*(a + b*x^n)^(p + 1)*((c
 + d*x^n)^(q - 1)/(b*(n*(p + q) + 1))), x] + Dist[1/(b*(n*(p + q) + 1)), Int[(a + b*x^n)^p*(c + d*x^n)^(q - 2)
*Simp[c*(b*c*(n*(p + q) + 1) - a*d) + d*(b*c*(n*(p + 2*q - 1) + 1) - a*d*(n*(q - 1) + 1))*x^n, x], x], x] /; F
reeQ[{a, b, c, d, n, p}, x] && NeQ[b*c - a*d, 0] && GtQ[q, 1] && NeQ[n*(p + q) + 1, 0] &&  !IGtQ[p, 1] && IntB
inomialQ[a, b, c, d, n, p, q, x]

Rule 537

Int[((e_) + (f_.)*(x_)^(n_))/(((a_) + (b_.)*(x_)^(n_))*Sqrt[(c_) + (d_.)*(x_)^(n_)]), x_Symbol] :> Dist[f/b, I
nt[1/Sqrt[c + d*x^n], x], x] + Dist[(b*e - a*f)/b, Int[1/((a + b*x^n)*Sqrt[c + d*x^n]), x], x] /; FreeQ[{a, b,
 c, d, e, f, n}, x]

Rule 4213

Int[((a_) + (b_.)*sec[(e_.) + (f_.)*(x_)]^2)^(p_), x_Symbol] :> With[{ff = FreeFactors[Tan[e + f*x], x]}, Dist
[ff/f, Subst[Int[(a + b + b*ff^2*x^2)^p/(1 + ff^2*x^2), x], x, Tan[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f, p},
 x] && NeQ[a + b, 0] && NeQ[p, -1]

Rubi steps \begin{align*} \text {integral}& = \frac {\text {Subst}\left (\int \frac {\left (a-b+b x^2\right )^{3/2}}{1-x^2} \, dx,x,\coth (c+d x)\right )}{d} \\ & = -\frac {b \coth (c+d x) \sqrt {a-b+b \coth ^2(c+d x)}}{2 d}-\frac {\text {Subst}\left (\int \frac {-((a-b) (2 a-b))-(3 a-b) b x^2}{\left (1-x^2\right ) \sqrt {a-b+b x^2}} \, dx,x,\coth (c+d x)\right )}{2 d} \\ & = -\frac {b \coth (c+d x) \sqrt {a-b+b \coth ^2(c+d x)}}{2 d}+\frac {a^2 \text {Subst}\left (\int \frac {1}{\left (1-x^2\right ) \sqrt {a-b+b x^2}} \, dx,x,\coth (c+d x)\right )}{d}-\frac {((3 a-b) b) \text {Subst}\left (\int \frac {1}{\sqrt {a-b+b x^2}} \, dx,x,\coth (c+d x)\right )}{2 d} \\ & = -\frac {b \coth (c+d x) \sqrt {a-b+b \coth ^2(c+d x)}}{2 d}+\frac {a^2 \text {Subst}\left (\int \frac {1}{1-a x^2} \, dx,x,\frac {\coth (c+d x)}{\sqrt {a-b+b \coth ^2(c+d x)}}\right )}{d}-\frac {((3 a-b) b) \text {Subst}\left (\int \frac {1}{1-b x^2} \, dx,x,\frac {\coth (c+d x)}{\sqrt {a-b+b \coth ^2(c+d x)}}\right )}{2 d} \\ & = \frac {a^{3/2} \text {arctanh}\left (\frac {\sqrt {a} \coth (c+d x)}{\sqrt {a-b+b \coth ^2(c+d x)}}\right )}{d}-\frac {(3 a-b) \sqrt {b} \text {arctanh}\left (\frac {\sqrt {b} \coth (c+d x)}{\sqrt {a-b+b \coth ^2(c+d x)}}\right )}{2 d}-\frac {b \coth (c+d x) \sqrt {a-b+b \coth ^2(c+d x)}}{2 d} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.65 (sec) , antiderivative size = 193, normalized size of antiderivative = 1.53 \[ \int \left (a+b \text {csch}^2(c+d x)\right )^{3/2} \, dx=\frac {\left (a+b \text {csch}^2(c+d x)\right )^{3/2} \left (\sqrt {2} \sqrt {b} (-3 a+b) \text {arctanh}\left (\frac {\sqrt {2} \sqrt {b} \cosh (c+d x)}{\sqrt {-a+2 b+a \cosh (2 (c+d x))}}\right )-b \sqrt {-a+2 b+a \cosh (2 (c+d x))} \coth (c+d x) \text {csch}(c+d x)+2 \sqrt {2} a^{3/2} \log \left (\sqrt {2} \sqrt {a} \cosh (c+d x)+\sqrt {-a+2 b+a \cosh (2 (c+d x))}\right )\right ) \sinh ^3(c+d x)}{d (-a+2 b+a \cosh (2 (c+d x)))^{3/2}} \]

[In]

Integrate[(a + b*Csch[c + d*x]^2)^(3/2),x]

[Out]

((a + b*Csch[c + d*x]^2)^(3/2)*(Sqrt[2]*Sqrt[b]*(-3*a + b)*ArcTanh[(Sqrt[2]*Sqrt[b]*Cosh[c + d*x])/Sqrt[-a + 2
*b + a*Cosh[2*(c + d*x)]]] - b*Sqrt[-a + 2*b + a*Cosh[2*(c + d*x)]]*Coth[c + d*x]*Csch[c + d*x] + 2*Sqrt[2]*a^
(3/2)*Log[Sqrt[2]*Sqrt[a]*Cosh[c + d*x] + Sqrt[-a + 2*b + a*Cosh[2*(c + d*x)]]])*Sinh[c + d*x]^3)/(d*(-a + 2*b
 + a*Cosh[2*(c + d*x)])^(3/2))

Maple [F]

\[\int \left (a +b \operatorname {csch}\left (d x +c \right )^{2}\right )^{\frac {3}{2}}d x\]

[In]

int((a+b*csch(d*x+c)^2)^(3/2),x)

[Out]

int((a+b*csch(d*x+c)^2)^(3/2),x)

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 1272 vs. \(2 (108) = 216\).

Time = 0.45 (sec) , antiderivative size = 6645, normalized size of antiderivative = 52.74 \[ \int \left (a+b \text {csch}^2(c+d x)\right )^{3/2} \, dx=\text {Too large to display} \]

[In]

integrate((a+b*csch(d*x+c)^2)^(3/2),x, algorithm="fricas")

[Out]

Too large to include

Sympy [F]

\[ \int \left (a+b \text {csch}^2(c+d x)\right )^{3/2} \, dx=\int \left (a + b \operatorname {csch}^{2}{\left (c + d x \right )}\right )^{\frac {3}{2}}\, dx \]

[In]

integrate((a+b*csch(d*x+c)**2)**(3/2),x)

[Out]

Integral((a + b*csch(c + d*x)**2)**(3/2), x)

Maxima [F]

\[ \int \left (a+b \text {csch}^2(c+d x)\right )^{3/2} \, dx=\int { {\left (b \operatorname {csch}\left (d x + c\right )^{2} + a\right )}^{\frac {3}{2}} \,d x } \]

[In]

integrate((a+b*csch(d*x+c)^2)^(3/2),x, algorithm="maxima")

[Out]

integrate((b*csch(d*x + c)^2 + a)^(3/2), x)

Giac [F(-2)]

Exception generated. \[ \int \left (a+b \text {csch}^2(c+d x)\right )^{3/2} \, dx=\text {Exception raised: TypeError} \]

[In]

integrate((a+b*csch(d*x+c)^2)^(3/2),x, algorithm="giac")

[Out]

Exception raised: TypeError >> an error occurred running a Giac command:INPUT:sage2:=int(sage0,sageVARx):;OUTP
UT:Error: Bad Argument Type

Mupad [F(-1)]

Timed out. \[ \int \left (a+b \text {csch}^2(c+d x)\right )^{3/2} \, dx=\int {\left (a+\frac {b}{{\mathrm {sinh}\left (c+d\,x\right )}^2}\right )}^{3/2} \,d x \]

[In]

int((a + b/sinh(c + d*x)^2)^(3/2),x)

[Out]

int((a + b/sinh(c + d*x)^2)^(3/2), x)